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Abstract

ActiveMath is an intelligent e-Learning system that exhibits some
Semantic Web features. Its content knowledge representation is a seman-
tic XML dialect for mathematics; semantic search is enabled; some of
its components work as a web service and, vice versa, it employs certain
foreign web services, e.g., for diagnostic purposes. In this paper, we de-
scribes features which have not been presented at all or only superficially
in previous publications.
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1 Introduction

ActiveMath was one of the first systems to seriously address the Semantic
Web – such as semantic representation and metadata – in a realistic e-learning
application. It is around for quite some time now and has evolved from a
prototype to a full-blown platform that is used by an international community
centred in Germany so far.

ActiveMath has typical intelligent tutoring system’s (ITS) components
such as expert/domain model, a student model, and pedagogical model/modules
including course generator, tutorial strategies, and feedback generators.

Different from most ITS it encodes the domain model implicitly in the con-
tent stored in a knowledge base. Because of this encoding and an active com-
munity of authors, the content and thus the ontology/domain model is evolving
and changing over time. Hence, ActiveMath has to take care of those changes.

What is also rather untypical for an ITS are the advanced features that make
it a Semantic Web application, e.g., semantic search, truly semantic markup
and reuse of content, generation of web presentations from the representation of
content, interoperable content and components, distributed architecture, asyn-
chronous event framework, etc. Hence, ActiveMath is also a workbench for
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Figure 1: Coarse architecture of ActiveMath with services

studying benefits of combining ITS and semantic e-learning technologies as sug-
gested in [Brooks et al.(2006)].

In the following, we describes web- and semantic-web-features which have
not been included at all or only superficially in previous articles.

2 Preliminaries about ActiveMath

In order to provide a rather self-contained chapter, we start with briefly summa-
rizing some of ActiveMath’s features which were already published in previous
publications, mainly in [Melis et al.(2006)].

Figure 1 coarsely depicts the server- and client-side of the ActiveMath
platform and its web-service communications with external servers (left-hand-
side). One central component of ActiveMath is its course(ware) generator,
called Paigos [Ullrich(2008)]. A course generator uses information about learn-
ing objects, the learner and his/her learning goals to generate an adapted se-
quence of learning objects that supports the learner in achieving his goals. In
contrast to current course generators [Conlan et al.(2002), Keenoy et al.(2005),
Karampiperis and Sampson(2005)], Paigos is based on an extensive model of
expert teaching knowledge – about 300 “rules” define how to assemble different
types of courses. Paigos also functions as a service and can be accessed by
other learning environments. Section 2.2 describes the requirements on knowl-
edge representation to enable such a service, and Section 3.3 describes the service
in detail.
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2.1 Semantic Knowledge Representation

The knowledge representation in ActiveMath is based on the OMDoc standard
for mathematical documents. It defines fine-grained learning objects (LOs)
connected to each other by relations. In ActiveMath we differentiate between
two types of OMDoc LOs: (1) so-called concepts that are the main elements of
the ontology such as symbols, representing mathematical concepts, definitions
of these concepts, axioms, theorems and so on; (2) satellite elements such as
example, exercises and other types of texts that elaborate on, explain, or train
the main concepts.

The OMDoc format itself is using OpenMath [OpenMath] as embedded format
for representing mathematical formulaæ. OpenMath is a well-established stan-
dard for representing mathematical formulaæ. OpenMath defines its semantic
as a mathematical language by the usage of so-called content dictionaries as
explained in [OpenMath]. The content dictionaries contain symbol declarations
which provide central hooks to which symbol occurrences point to when using
the OMS element. The symbol declarations are complemented by a description
in regular English and by formal properties which are mathematical statements
that should stay true for the symbol to be interoperable. The content dic-
tionaries define what is agreed upon when emitting and processing OpenMath
expressions. This enables a semantic evaluation and a search for mathematical
formulæ.

OMDoc extends this format in two directions: all textual fragments can be
made in multiple languages and be interleaved with formulæ and it extends
the structure options by a grouping construct called theory which models the
concept of a formal mathematical theory allows a rich management of names-
pace by the usage of imports. Referencing the structure, e.g. theory, to which a
symbols belongs adds semantical information to mathematical expressions (e.g.,
whether + is plus for real numbers or for matrices) which provides a basis for
their semantic evaluation. This is important for external mathematical reason-
ing services used for diagnosing user input. Not for all services a disambiguated
semantics of all symbols is needed. Some computer algebra systems (CAS) use
symbol overloading for the cases in which a disambiguation of symbols is pos-
sible. For instance, symbol ’+’ might be used both for adding integers and
matrices and some CAS can disambiguate the semantics of the operation by
analyzing the arguments. Such overloading is used to make human interaction
with the CAS easier. But domain reasoning services, which are supposed to
be only used as back end engines for semantic evaluation cannot resolve any
ambiguities and, therefore, need formulaæ with proper semantics.

ActiveMath can communicate with CASs and domain reasoners which
have so-called phrasebooks translating the OpenMath input into their mathe-
matical representation and vice versa translating computation result back to
OpenMath for ActiveMath.
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2.2 Ontologies

ActiveMath uses two different ontologies. One ontology is represented within
pure OMDoc and describes the subject domain from a mathematical point of view.
The second ontology contains the pedagogical information and is represented in
our extension of OMDoc. It defines types (or classes) of learning objects according
to their instructional function and properties of LOs. It is independent of the
specific subject domain.

We had to develop such an ontology because existing learning object meta-
data standards such as LOM [ieee Learning Technology Standards Committee(2002)]
failed to describe learning objects sufficiently precise for intelligent components
to integrate them automatically into the students’ learning work flow. Active-
Math’s ontology of instructional objects (oio) [Ullrich(2005)] contains specifi-
cally this previously missing information. Its classes are shown in Figure 2.

The ontology enables several of ActiveMath’ advanced pedagogical fea-
tures. It allows to define the course generation knowledge such that it is in-
dependent of the specific mathematical domain. The “rules” can be applied
to teach differentiation as well as group theory. In [Rostanin et al.(2006)] we
showed that it can also be applied to completely different domains (e.g., for work
flow embedded e-learning). Furthermore, the ontology facilitates the process of
making third-party repositories available to the course generator. On the one
hand, this process helps to assemble a course from resources of different reposi-
tories. On the other hand, the ontology helps to enable the course generator to
provide its functionality as a service to systems that plug in their repositories
(described in Section 3.3).

Applications of the ontology in areas other than course generation were
investigated in the European Network of Excellence Kaleidoscope and published
in [Merceron et al.(2004)]. Moreover, the oio was used for a revised version
of the ALOCoM ontology [Knight et al.(2006)], in the e-learning platform e-
aula [Sancho et al.(2005)], and in the CampusContent project of the Distant
University Hagen [Krämer(2005)].

2.3 Metadata

Metadata used by ActiveMath can be divided in three main categories: gen-
eral administrative metadata, mathematical metadata, and educational meta-
data.

For general annotations of LOs such as title of the item, date of its cre-
ation or modification, names of authors, copyright information and so on, Ac-
tiveMath uses the standard Dublin Core metadata element set. The Rights
element/values used for specifying copyright is replaced by Creative Commons
metadata.

Mathematical metadata define mathematical types of LOs and relations be-
tween them. There are several kinds of mathematical relations between LOs.
The most frequently used are: (1) the domain prerequisite relation that indi-
cates that a concept is needed in order to introduce the current concept; and (2)
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Figure 2: Overview of the Ontology of Instructional Objects

the for relation indicating that the current LO relates to a concept/symbol, e.g.,
to define, explain, illustrate, train a concept (a symbol, theorem, or definition).

Educational metadata include some metadata imported from LOM, such
as learning context, difficulty, field, and abstractness. They define
parameters of ’auxiliary’ LOs that help the components of ActiveMath to act
intelligently and to model the student.

Competency metadata are assigned to ’auxiliary’ LOs. Following the ap-
proach of Anderson and Krathwohl [Anderson et al.(2001)], a competency is
represented as a pair of a cognitive process and one or more domain concepts.
This metadata defines a skill the LO addresses. ActiveMath can relate to sev-
eral competency schemes, such as Bloom’s Taxonomy of Learning Goal Levels,
the PISA competencies, and an extension of Anderson and Krathwohl’s scheme
described in [Melis et al.(2008)].

3 Web-Services and Components of ActiveMath

3.1 Diagnostic Services

ActiveMath has a generic framework for distributed diagnostic services. This
framework implements interfaces for connecting different kinds of remote ser-
vices using existing protocols supported by web applications. ActiveMath
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can query two kind of services for diagnosing the student’s input, generic com-
puter algebra systems (CASs) and specifically designed domain reasoner services
which provide more human-like reasoning and possibly incorrect rules in differ-
ent mathematical domains.

The semantic OpenMath markup for mathematical formulaæ and a generic
format for queries to the diagnostic services (see below) support the interoper-
ability of different CASs and reasoners when serving complex domains. For each
diagnostic service, the OpenMath formulaæ are translated to and from the syntax
of the service via an OpenMath phrasebook. Due to the fact, that the OpenMath
format represents semantics of mathematical formulaæ, such phrasebooks can
always be implemented. Currently, ActiveMath integrates and communicates
with the following CASs: YACAS [5], Maxima [3], and WIRIS [4]; phrasebooks
for Maple [1] and Mathematica [2] are available too.

Figure 3 shows different ways of connecting to CASs that we realized in our
framework dependent on a CAS’s existing implementations: the WIRIS CAS
server is connected to ActiveMath via XML-RPC and contains an internal
OpenMath phrasebook. The YACAS server that was developed in ActiveMath
group has native support for OpenMath and is communicating directly via an
internal OpenMath protocol. The Maxima server communicates via WDSL and
the queries are piped through an external phrasebook.

The most generic CAS connected to ActiveMath is currently YACAS, since
it is modular and easily extensible. New domains can be attached to YACAS by
exchanging or extending the current domains that are represented as modules
in form of scripts that can be attached as parameters to the YACAS process or
loaded into the running system on fly. Moreover, ongoing work is implementing
rule based domain reasoners in the form of YACAS modules, that could provide
more sofisticated stepwise diagnosis and are answering ActiveMath specific
queries described in the section 3.1.2.

CASs are very efficient and fast in providing diagnoses needed for the genera-
tion of a flag feedback (correct/incorrect) as well as for the final correct solution
for the given problem.

CAS services are also used for creating so-called randomized exercises, in
which the complete solution of an interactive exercise is parametrized. For
every admissable instantiation of the parameters a concrete exercise and its
solution can be generated. The Randomizer of the exercise subsystem of Ac-
tiveMath generates exercises by instantiating the parameters with randomly
chosen values from defined ranges over numbers and intervals, but also any set
of mathematical functions and their superpositions. Since the solution of each
step of a problem is represented as a mathematical expression, for each ran-
domized exercise answers/input from the student can be diagnosed as correct
or incorrect by a CAS. For more information about the randomizer component
see [Dudev, González Palomo(2007)].

More detailed diagnoses can be obtained when a domain reasoner is available
for the mathematical domain of the exercise. A domain reasoner can send
responses to queries which are used to generate common tpes of hints for the
learner such as
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• next step hint

• correct input for current step

• number of steps to final solution, etc.

An example of a domain reasoner service is SLOPERT [Zinn(2006)], which
encapsulates expert and buggy human-like rules for the (mathematical) domain
of symbolic differentiation. This service maintains an internal state and, thus,
can trace the (partial9 solution of the student and diagnose his/her errors. An-
other domain reasoner connected to ActiveMath is MathCoach [Grabowski et al.(2005)],
which is stateless and cannot trace a student’s solution.

Another interesting example is the series of domain reasoners implemented
withing an ’Intelligent Feedback Project’ at the Open Universitein Nederland
[Heeren at al.(2008)]. Several domain reasoners have been programmed using
programming language Haskell1 and offered as reasoning web services answer-
ing queries similar to one we define in ActiveMath (see section 3.1.2. Among
areas/tasks covered by these domain reasoners are, e.g. rewriting logical expres-
sions into disjunctive normal form, solving linear equations, reducing matrices
to echelon normal form, and basic operations on fractions. These services offer
incremental reasoning, also checking for syntactical errors as well as matching
common semantic errors using buggy rules.

3.1.1 Service Query Architecture

Few other systems try to make mathematical services such as CASs or theorem
provers accessible through the web. Examples of such are MONET services
[MONET(2003)], or MathServe [Zimmer, Autexier(2006)].

ActiveMath implements a novel service architecture for the diagnosis of
student’s actions in mathematical problem solving. The diagnosis task imposes
some requirements upon such services, which we describe below. In Active-
Math, a broker architecture distributes queries to external diagnosis services,
as shown in Figure 3.

The Query Broker accesses those services that are registered for the (math-
ematical) domain needed for the diagnosis. For instance, a domain reasoner
for symbolic differentiation is only queried for (sub-)problems in symbolic dif-
ferentiation. The subscribed mathematical services themselves can also send a
query back to the Query Broker. For example, a domain reasoner for symbolic
differentiation can send a query back to the broker if it needs to simplify an
arithmetic expression. The Query Broker passes this new query to a CAS or
arithmetic domain reasoner.

3.1.2 Queries

In ActiveMath generic queries are used to access any diagnosis service. The
queries include a number of dimensions, one of them is context.

1see http://www.haskell.org/
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Figure 3: Diagnosis framework architecture

A context defines (sub-)sets of rules and functions that a domain reasoner
or a CAS is allowed to use for its diagnosis. The background for this restriction
is that the student’s learning situation determines which ’rules’ and functions
he/she is capable to employ. Hence, the diagnosis need to simulate this rather
than accepting a student input saying ’solve’.

Consider the following example: The task of the student is to differentiate
a function f(x) = (x + 1) · x. If the student has not yet learned the product
rule, a reasonable and correct next step would be an arithmetic transformation
that removes brackets. Using the product rule would not be expected from the
student. In this case, the evaluation of the student’s answer needs to exclude
the product rule from the context but include the arithmetic context.

In order to formalize queries used for diagnosis and feedback generation we
defined the format for queries in which a query to the domain reasoner service
consist of:

• action of the query, e.g. getResults, getUserSolutionPaths

• (list of) input expressions to be evaluated or compared with each
other, e.g., evaluating or simplifying task, comparing a user answer with
correct answer

• context of action identifying the set of applicable rules, e.g., arithmetic,
differentiation, logic

• number of iterations defines how many atomic steps the domain reasoner
should perform in the given context.
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In the following, e, e1, e2, are OpenMath expressions, C is a context of a
query, N is the number of iterations. A solution path is a list of results of
consecutive rule applications, which are annotated with rule identifiers.

Currently the following queries to diagnostic services are used in Active-
Math:

• query(getResults, e, C, N) - returns the list of final nodes of all paths
of length N starting at e in the context C

• query(compare, e1,e2, C, N) - returns true if there exists a path of the
length N from e1 to e2 in the context C, false otherwise

• query(getRules, e, C) - returns the list of the identifiers of expert rules
applicable to e in context C

• query(getBuggyRules, e1, e2, C, N) - returns the list of the identifiers of
all buggy rules that belong to a path from e1 to e2 in the context C. This
query is possible for those domain reasoners that can reason with (typical)
buggy rules and some CASs, which can be extended to do so.

• query(getUserSolutionPaths, e1, e2, C, N) - returns the list of all paths
of length N from e1 to e2 in the context C

• query(getExpertSolutionPaths, e, C, N) - returns the list of all paths
of length N starting at e in the context C. In this query C can consist of
expert rules only.

• query(getNumberOfStepsLeft, e, C) - returns the number of steps left to
reach the final node of the shortest expert solution path in context C

• query(getRelevance, e1, e2, C) - returns ’true’ if the expression e2 is
closer than e1 to the actual solution in the context C,

Several simple contexts can form a composite context by concatenating sets
of their rules. Consider a following example query to a domain reasoner:

Example query: Calculate the next two steps for computing derivative
of the function f(x) = (x + 1) · x using only arithmetic simplifications and
differentiation rules except for a product rule.

Using our query format we can formalize the example query as follows:

query(getResults, (x + 1) · x, C, 2),

where C is the composite context consisting of arithmetical context and differ-
ential rules without product rule.

3.2 Student Model

Interoperability of a student model framework requires its ability to adopt dif-
ferent frameworks for competencies/skills which are used in different intelligent
educational softwares. Moreover, as a web-based system that relies on content
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produced by a community of authors ActiveMath needs to adapt to the po-
tentially changing structure of the domain model and, hence, of the competency
model as well. Therefore, the structure of ActiveMath’ the student model is
generated from the metadata including relations available in the content repre-
sentation.

In order to cope with the potentially modified (implicit) content/domain
ontology the semantics-aware student model (SLM) dynamically extracts rela-
tions and metadata from the ontology and makes use of their semantics. These,
together with data from student interactions, enable SLM to estimate students’
competencies. Moreover, ActiveMath’ student model is flexible enough to act
upon web contents using different competency frameworks and it can handle
the semantics for a number of competencies. Currently, it can choose between
the competency taxonomies used in PISA [OECD(2004)], in Bloom’s taxon-
omy [Bloom(1956)], in a comprehensive up-to-date taxonomy as described in
[Anderson et al.(2001), Melis et al.(2008)], and in an extension of the latter.

In the content, the metadata related to competencies refer to a taxonomy
chosen by the author. For instance, the PISA specification for mathematics
’competencies’ includes

1. think
2. argue
3. model
4. solve
5. represent
6. language
7. tools.
In the following, we will mainly describe the build-process of SLM rather

than go into detail of the updating of competency-values through Item Response
Theory and Transferable Belief Model [Faulhaber and Melis(2008)].

The generation of the student model is data-driven. The structure of SLM
consists of nodes, each for a single rule/concept to estimate competencies for.
SLM automatically creates a node for each concept/rule k included in the cur-
rent learning content of a student, e.g., the concept ’definition of fraction’ or the
rule ’addition of fractions with unlike denominators’. See Figure 4. SLM stores
each associated competency value m(k, p) within the node, where a competency
is defined as a pair (k, p), in which p is a cognitive process, such as apply an
algorithm or model a mathematical problem that is applied to k.

Inter-node relations are dynamically extracted from the content metadata,
i.e., the implicit domain ontology. Most important is the prerequisite rela-
tionship.

For each competency, beliefs about the competency values (represented by
the nodes) are computed separately from recent evidences. In this computation,
relations between exercises and concepts/rules as well as exercise competency
metadata determine to which nodes evidences are attributed. Propagation along
the prerequisite relations adds additional information for the competency
estimation. Again, see Figure 4 for an illustration.
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Figure 4: Structure of the student model and its updating links

3.3 Course Generation Service

The course generator of ActiveMath (Paigos) is designed as an independent
component whose services can be accessed by other learning environments, too.
This requires that Paigos and the third party learning environments share a
common understanding of the type of courses that are to be generated. We
describe our semantic representation of scenarios in Section 3.3.1. Then, in
Section 3.3.2, we describe the interface and the process flow between Paigos
and its clients. The specific functionality of the interface was informed by a
survey among potential clients (the results are reported in detail in [Lu(2006),
Ullrich(2008)]).

3.3.1 Pedagogical Tasks

The oio enables reasoning about learning objects. However, pedagogically sen-
sible course generation requires reasoning that takes learning scenarios into ac-
count, that is, the context of a learner who studies the content. In traditional
course generation systems, scenarios consist only of learning objects, which rep-
resent the target content that is to be learned. Such an approach ignores that
different purposes require different course of actions. For instance, a course for
preparing an exam should consist of different learning objects than a course that
contains a guided tour.

Furthermore, in the Web of today where systems are no longer standalone
but embedded in the eco-system of the Web, the representation of the scenarios
should enable communication about and exchange of scenarios between differ-
ent systems and services. Thus, the representation needs to contain sufficient
semantic information to enable such functionality.

Van Marcke [Van Marcke(1998)] introduced the concept of an instructional
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Identifier Description
discover Discover and understand concepts in

depth
rehearse Address weak points
trainSet Increase mastery of a set of concepts by

training
guidedTour Detailed information, including prerequi-

sites
trainWithSingleExercice Increase mastery using a single exercise
illustrate Improve understanding by a sequence of

examples
illustrateWithSingleExample Improve understanding using a single ex-

ample

Table 1: A selection of tasks used in Paigos

tasks, which represents an activity that can be accomplished during the learning
process. This helps to define scenario more accurately since both, the content
and the instructional task are essential aspects of a learning goal. Therefore,
we define scenarios as a combination of the two dimensions content and task.

A scenario is a tuple t = (p, L), where p is an identifier of the instructional
task and L is a list of learning object identifiers. L specifies the course’s target
concepts, and p influences the structure of the course and the learning objects
selected.

For instance, the instructional task to discover and understand content in
depth is called discover. Let’s assume that def slope and def diff are the
identifiers of the learning objects that contain the definition of the mathemat-
ical concept “average slope of a function” and “definition of the differential
quotient”, respectively. We can now write the scenario for a learner who wants
to discover and understand these two concepts as t = (discover, (def slope,
def diff)).

Table 1 contains a selection of tasks that Paigos can process. The table
shows that tasks exist on different levels of abstraction: the highest-level tasks
result in complete courses (the first four tasks in Table 1); however, tasks can
also result in the selection of a single learning object.

Tasks can be “internal” tasks, used for internal course generation purposes
only, or tasks that are of potential interest for other services. The second cate-
gory of tasks is called public tasks. Public tasks need to be described sufficiently
precise in order to enable a communication between different components, ser-
vices and systems. The description designed for Paigos contains the following
information:

• the identifier of the task;

• the number of concepts the task can be applied to. A task can either be
applied to a single concept (cardinality 1) or multiple concepts (cardinality
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n).

• the type of learning object (as defined in the oio) that the task can be
applied to;

• the type of course to expect as a result. Possible values are either course
in case a complete course is generated or section in case a single section is
returned. Even in case the course generator selects only a single learning
object, the resource is included in a section.

• an optional element condition that is evaluated in order to determine
whether a task can be achieved. In some situations, a service only needs
to know whether a task can be achieved but not by which learning ob-
jects. An example is ActiveMath’s item menu that allows the learner
to request additional content. Menu entries are displayed only if the cor-
responding tasks can be achieved. For instance if there are no examples
available for def slope, then the task (illustrate, (def slope)) cannot
be achieved.

• a concise natural language description of the purpose that is used for
display in menus.

Figure 5 contains a selection of tasks. In the figure, all keywords in the
condition element that start with ? are variables which are instantiated by
the corresponding value at the time the condition is evaluated. The top element
in Figure 5 describes the pedagogical task discover. It is applicable to sev-
eral educational resources of type fundamental. The bottom element specifies
the task trainWithSingleExercise!. It is applicable to a single educational
resource of the type fundamental and returns a result in case the condition
holds.

3.3.2 Course Generation Web Interfaces

Paigos provides two main kinds of Web interfaces: the core interface that
contains the methods for the course generation, and the repository integration
interface that allows a client to register a repository at Paigos. The core
interface consists of the following methods:

• The method getTaskDefinitions is used to retrieve the pedagogical tasks
which the course generator can process.

• The method generateCourse starts the course generation on a given task.
The client can make information about the learner available in two ways:
if the learner model contains information about the specific learner, then
the client passes the respective learner identifier as a parameter. In case
no learner model exists, a client gives a list of property-value pairs that
is used by Paigos to construct a temporary “learner model”. The course
generator performs the planning in the same way as with a real learner
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<tasks>
<task>

<pedObj id="discover"/>
<contentIDs cardinality="n"/>
<applicableOn type="fundamental"/>
<result type="course"/>
<condition></condition>
<description>

<text xml:lang="en">Generate a book that helps a learner to
understand the selected topics in depth.</text>

<text xml:lang="de">Erstelle ein Buch das hilft die
ausgew\"ahlten Begriffe grundlegend zu verstehen</text>

</description>
</task>
<task>

<pedObj id="illustrateWithSingleExample!"/>
<contentIDs cardinality="1"/>
<condition>(class Example)(relation isFor ?c)

(property hasLearningContext ?learningContext)
</condition>
<applicableOn type="fundamental"/>
<result type="section"/>
<description>

<text xml:lang="en">Illustrate the concept.</text>
<text xml:lang="de">Veranschauliche den Inhalt.</text>

</description>
</task>
<task>

<pedObj id="trainWithSingleExercise!"/>
<contentIDs cardinality="1"/>
<applicableOn type="fundamental"/>
<result type="section"/>
<condition>(class Exercise)(relation isFor ?c)

(property hasLearningContext ?learningContext)
</condition>
<description>

<text xml:lang="en">Train the concept.</text>
<text xml:lang="de">\"Ube den Inhalt.</text>

</description>
</task>
...

</tasks>

Figure 5: A selection of public task descriptions

14



model, however its access of learner properties is diverted by Paigos and
answered using the map. Properties not contained in the map are an-
swered with a default value.

The result of the course generation is a structured sequence of learning objects
represented in an ims Manifest[IMS Global Learning Consortium(2003)]. Since
the returned result does not contain the resources but only references, it is not
an ims cp.

The interface for repository registration consists of the following methods:

• The method getMetadataOntology informs the client about the metadata
structure used in Paigos. It returns the ontology of instructional objects.

• The method registerRepository registers the repository that the client
wants the course generator to use. The client has to provide the name
and the location (url) of the repository. Additional parameters include
the ontology that describes the metadata structure used in the repository
and the mapping of the oio onto the repository ontology.

• The method unregisterRepository cancels the registration of a reposi-
tory.

A client that wants to use Paigos needs to specify information about the
learning objects as well as about the learner (if available).

The interface ResourceQuery is used to query the repository about proper-
ties of learning objects. The interface consists of the following methods:

• queryClass returns the classes a specified resource belongs to

• queryRelation returns the set of identifiers of those learning objects the
given resource is related to via the specified relation

• queryProperty returns the set of property-value pairs the specified re-
source has.

The LearnerPropertyAPI makes the learners’ properties accessible to Pai-
gos in case the client has a learner model and wants the course generator to use
it. In the current version of Paigos, this interface is not yet implemented. It
would require a mediator architecture similar to the one used in ActiveMath
for repository integration [Kärger et al.(2006)].

A repository is registered in the following way (for a sequence diagram illus-
trating the registration, see Figure 6): in a first step, the client (LMS-Client in
the figure) retrieves the metadata ontology used in Paigos (i. e., the oio). The
ontology is then used to generate a mapping between the oio and the ontol-
ogy representing the client metadata (Step 2) (the currently existing mappings
were manually authored). Then, the repository is registered using the method
registerRepository (Step 3). The repository is added to the list of avail-
able repositories and made known to the mediator (a component of Paigos
that allows the integration of third-party repositories) (Step 4). Subsequently,
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Figure 6: A sequence diagram illustrating the repository registration

the mediator fetches the ontology mapping from the client and automatically
generates a wrapper for querying the contentAPI of the client.

A client starts the course generation using the service method generate-
Course. The argument of the method consist of a task. In a first step, Paigos
checks whether the task is valid. If so, the course is generated by the course
generator. During the generation process, Paigos sends queries to the mediator,
which passes the queries to the repository. The results are cached in order
to speed-up the course generation process. After the course is generated, the
omgroup (the element OMDoc uses for grouping elements) generated by Paigos
is transformed into an ims manifest and sent to the client.

4 Consistent Presentation and Management of
Mathematical Expressions

As largely explained in §2.1, OpenMath is the semantic representation of mathe-
matics in ActiveMath on which presentation and management of mathemat-
ical expressions is based.

For different users, mathematical formulæ can be visualized in ActiveMath
in different forms – depending on the user’s (cultural) context and preferences.
Moreover, the diversity of the rendering forms also builds on the diversity of the
notations in mathematical practice, e.g., the fact that sin2 x is written without
bracket while sin2(x+y) is written with brackets even though the mathematical
symbol is the same.

In order not to confuse the student, the presentation of mathematical ex-
pressions should be the same in all tools of his/her learning experience. For
instance, when the learner uses a curve plotter, the lexicon/search tool, the
input editor, a CAS service, he/she should view the same presentation of a
symbol in any application. Therefore, the presentation in any of the tools can-
not be hard coded but need to be generated. The generation of a presentation
is also required because of the need of cultural adaptation which requires to use
culture-specific presentations for a number of symbols/expressions.

Following the common web practice, all interactions in ActiveMath are
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done in a web-browser and applets. The browser’s interactions with the web-
server involve the generation of a presentation code (see again Figure 1). As
much as possible, ActiveMath uses its generic rendering architecture to pro-
duce the rendering of mathematical formulæ based on their semantic represen-
tation.

Most other web-solutions for mathematics focus on a single presentation
language which can be rendered in multiple browsers. For instance, JS-math2 or
Wikipedia’s texvc3 use a subset of LATEX to allow for authoring of mathematical
formulæ with presentation markup, i.e., markup usable only for rendering.

This does not, however, solve the presentation problem for student inter-
actions and search as needed in an eLearning system. In order for learners to
smoothly interact with content and tools and to avoid a cognitive overload it is
important that the appearance/rendering of mathematical formulæ in all user
interfaces and applications is the same. At first this seems to be trivial but it
is not:

• Interactions occur in interactive exercises for which the student’s input is
evaluated. Interactions also occur with (GUIs of) interactive tools such
as computer algebra systems or function plotter. In this case, the se-
mantic and computable nature of the mathematical object is required for
consistency.

• Search for mathematical formulæ needs to be independent of the actual
rendering and should exclude mismatches such as x + y2 when the user
queried for x2.

ActiveMath responds to the need to render formulæ consistently in the
content as well as in interactions and to search semantically, by processing all
formulæ in OpenMath and by using its presentation engine as much as possible.
An interaction for which OpenMath is crucial is the input of formulæ.

4.1 Input of Mathematical Formulæ

Mathematical formulæ can be input in three ways:

Input Editor: The input editor of ActiveMath is palette-based and can
be use in different platforms. It is easily accessible to a novice user for the input
of basic symbols. It is implemented as a Java applet which internally edits
an OpenMath expression. Its palettes are configurable by a skilled author. Its
rules for transforming OpenMath expressions to a rendering code employ internal
rules and notations central to ActiveMath – thus achieving consistency for a
student.

2JSmath is a javascript library that renders TeX within the browser, see http://www.math.
union.edu/~dpvc/jsMath/

3texvc is an add-on to mediawiki explained at http://en.wikipedia.org/wiki/Texvc.
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Textfields: Because not all students want to work with such an input editor
ActiveMath enables linear input syntax as well, a syntax resembling that of
the Maple. Again, the output is OpenMath.

Linear Input for Authors: Within the authoring environment [Libbrecht and Gross(2006)],
the input of mathematical formulæ is made along a linear syntax which is con-
figurable by notation files.

All of these methods can be complemented by a copy-and-paste facility: a
feature of the (added value) presentation service is to make an OpenMath term
available at an URL. The drop of the URL representing this term is interpreted
by the input editor and other recipients (linear input, function plotter, etc) as
the wish to fetch and insert the underlying OpenMath expression.

4.2 Adaptive Rendering of Formulæ

Rendering of formulæ is part of the rendering/presentation process of Active-
Math which aims at delivering browser code for the content. This delivery
depends on the context and preferences of the user which includes the following
dimensions:

• the format of delivery, which is mostly a choice of the user (currently
HtML +css, TEX/PDF, and xHtML+MathML are supported)

• the language of the user, which impacts the notations

• the educational context and field of study

• the course that is currently delivered.

The delivery converts OMDoc items, which contain formulæ in OpenMath, into
chunks of browser code based on the format, language, and notation. XSLT
transformations are used to this end. The XSLT transformations are partially
generated by a set of notations which associates OpenMath prototypes (expres-
sions with variables as placeholders) to a presentation template.

The resulting adaptive rendering yields a presentation of mathematical con-
tent that is in line with a user’s cultural customs while at the same time it keeps
its meaning through the underlying OpenMath expressions.

5 Conclusion

The article described several Semantic Web features of the eLearning platform
ActiveMath. The backbone of many of those features is the semantic knowl-
edge representation for mathematics OMDoc and its ActiveMath metadata ex-
tensions. We also describe web services used for intelligent course generation, for
the diagnosis of student input in exercises, as well as the consistent presentation
and management of mathematical expressions.
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The oio ontology we developed has been adopted and extended by other
groups. We hope this will also happen to the interoperable services which are
currently used by ActiveMath. The ActiveMath group in the process of
reusing learning material originally devised for other learning environments.
For this purpose, however, mathematical semantics and metadata have to be
added to the content.

5.1 Future Work

Interoperable user models Currently, ActiveMath can exchange basic
student profile information with other applications such as Moodle but does
not (yet) exchange detailed student model information. This is a future goal.

Paigos was successfully used by the two third-party systems MathCoach
(a learning tool for statistics [Grabowski et al.(2005)]), and Teal (work flow
embedded e-learning at the workplace, [Rostanin et al.(2006)]). Future work
on Paigos is necessary to realize a mediator-like architecture for the generic
integration of/communication with student models of other applications.

Fuzzy Semantic Mathematical Search The search tool of ActiveMath
has almost been neglected in this article even though it searches semantically by
matching formulæ and their OpenMath trees and its search for LOs can integrate
metadata. The match of OpenMath trees is exact which makes it appropriate
only if no equivalent formulation should be returned. That is, for x + y only
x + y would be returned but not y + x. Normalization is a first step to cope
with various equivalent encodings. Future work will deal with less exact search.
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